Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105176, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37599003

RESUMO

Substance abuse is on the rise, and while many people may use illicit drugs mainly due to their rewarding effects, their societal impact can range from severe, as is the case for opioids, to promising, as is the case for psychedelics. Common with all these drugs' mechanisms of action are G protein-coupled receptors (GPCRs), which lie at the center of how these drugs mediate inebriation, lethality, and therapeutic effects. Opioids like fentanyl, cannabinoids like tetrahydrocannabinol, and psychedelics like lysergic acid diethylamide all directly bind to GPCRs to initiate signaling which elicits their physiological actions. We herein review recent structural studies and provide insights into the molecular mechanisms of opioids, cannabinoids, and psychedelics at their respective GPCR subtypes. We further discuss how such mechanistic insights facilitate drug discovery, either toward the development of novel therapies to combat drug abuse or toward harnessing therapeutic potential.


Assuntos
Drogas Ilícitas , Receptores Acoplados a Proteínas G , Humanos , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Canabinoides/metabolismo , Canabinoides/farmacologia , Alucinógenos/metabolismo , Alucinógenos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Drogas Ilícitas/metabolismo , Drogas Ilícitas/farmacologia , Modelos Moleculares , Receptores de Serotonina/metabolismo , Desenvolvimento de Medicamentos/normas
2.
Mol Pharmacol ; 103(1): 1-8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310031

RESUMO

Opioid analgesics exert their therapeutic and adverse effects by activating µ opioid receptors (MOPR); however, functional responses to MOPR activation are modulated by distinct signal transduction complexes within the brain. The ventrolateral periaqueductal gray (vlPAG) plays a critical role in modulation of nociception and analgesia, but the exact intracellular pathways associated with opioid responses in this region are not fully understood. We previously showed that knockout of the signal transduction modulator Regulator of G protein Signaling z1 (RGSz1) enhanced analgesic responses to opioids, whereas it decreased the rewarding efficacy of morphine. Here, we applied viral mediated gene transfer methodology and delivered adeno-associated virus (AAV) expressing Cre recombinase to the vlPAG of RGSz1fl\fl mice to demonstrate that downregulation of RGSz1 in this region decreases sensitivity to morphine in the place preference paradigm, under pain-free as well as neuropathic pain states. We also used retrograde viral vectors along with flippase-dependent Cre vectors to conditionally downregulate RGSz1 in vlPAG projections to the ventral tegmental area (VTA) and show that downregulation of RGSz1 prevents the development of place conditioning to low morphine doses. Consistent with the role for RGSz1 as a negative modulator of MOPR activity, RGSz1KO enhances opioid-induced cAMP inhibition in periaqueductal gray (PAG) membranes. Furthermore, using a new generation of bioluminescence resonance energy transfer (BRET) sensors, we demonstrate that RGSz1 modulates Gαz but not other Gαi family subunits and selectively impedes MOPR-mediated Gαz signaling events invoked by morphine and other opioids. Our work highlights a regional and circuit-specific role of the G protein-signaling modulator RGSz1 in morphine reward, providing insights on midbrain intracellular pathways that control addiction-related behaviors. SIGNIFICANCE STATEMENT: This study used advanced genetic mouse models to highlight the role of the signal transduction modulator named RGSz1 in responses to clinically used opioid analgesics. We show that RGSz1 controls the rewarding efficacy of opioids by actions in ventrolateral periaqueductal gray projections to the ventral tegmental area, a key component of the midbrain dopamine pathway. These studies highlight novel mechanisms by which pain-modulating structures control the rewarding efficacy of opioids.


Assuntos
Analgésicos Opioides , Morfina , Camundongos , Animais , Morfina/farmacologia , Morfina/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismo , Recompensa , Receptores Opioides mu/metabolismo
3.
Structure ; 28(9): 1004-1013.e4, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470317

RESUMO

Despite high-resolution crystal structures of both inactive and active G protein-coupled receptors (GPCRs), it is still not known how ligands trigger the large structural change on the intracellular side of the receptor since the conformational changes that occur within the extracellular ligand-binding region upon activation are subtle. Here, we use solid-state NMR and Fourier transform infrared spectroscopy on rhodopsin to show that Trp2656.48 within the CWxP motif on transmembrane helix H6 constrains a proline hinge in the inactive state, suggesting that activation results in unraveling of the H6 backbone within this motif, a local change in dynamics that allows helix H6 to swing outward. Notably, Tyr3017.48 within activation switch 2 appears to mimic the negative allosteric sodium ion found in other family A GPCRs, a finding that is broadly relevant to the mechanism of receptor activation.


Assuntos
Prolina/química , Rodopsina/química , Rodopsina/metabolismo , Células HEK293 , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Conformação Proteica , Rodopsina/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Triptofano/química , Triptofano/genética , Tirosina/química , Tirosina/metabolismo
4.
Biophys J ; 112(11): 2315-2326, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591604

RESUMO

G protein-coupled receptors (GPCRs) have evolved a seven-transmembrane helix framework that is responsive to a wide range of extracellular signals. An analysis of the interior packing of family A GPCR crystal structures reveals two clusters of highly packed residues that facilitate tight transmembrane helix association. These clusters are centered on amino acid positions 2.47 and 4.53, which are highly conserved as alanine and serine, respectively. Ala2.47 mediates the interaction between helices H1 and H2, while Ser4.53 mediates the interaction between helices H3 and H4. The helical interfaces outside of these clusters are lined with residues that are more loosely packed, a structural feature that facilitates motion of helices H5, H6, and H7, which is required for receptor activation. Mutation of the conserved small side chain at position 4.53 within packing cluster 2 is shown to disrupt the structure of the visual receptor rhodopsin, whereas sites in packing cluster 1 (e.g., positions 1.46 and 2.47) are more tolerant to mutation but affect the overall stability of the protein. These findings reveal a common structural scaffold of GPCRs that is important for receptor folding and activation.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Ligação de Hidrogênio , Modelos Moleculares , Movimento (Física) , Mutação , Conformação Proteica , Dobramento de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo
5.
Nat Struct Mol Biol ; 23(8): 738-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376589

RESUMO

Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins.


Assuntos
Rodopsina/química , Regulação Alostérica , Animais , Bovinos , Células HEK293 , Humanos , Ligação de Hidrogênio , Cetonas/química , Transdução de Sinal Luminoso , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Rodopsina/fisiologia , Transducina/química
6.
Eur J Pharmacol ; 768: 108-15, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26526350

RESUMO

FFA1 (previously known as GPR40) is a free fatty acid receptor involved in the regulation of inflammatory processes and insulin secretion. The cellular actions resulting from FFA1 activation have received considerable attention. However, little is known on the regulation of the receptor function. In the present work, using cells transfected with this receptor, docosahexaenoic acid and α-linolenic acid increased intracellular calcium concentration and ERK 1/2 phosphorylation. It was also observed that FFA1 is a phosphoprotein whose phosphorylation state was increased (2- to 3-fold) by agonists (i.e., free fatty acids) and also by phorbol myristate acetate. Agonist- and phorbol ester-mediated FFA1 phosphorylation was markedly reduced by inhibitors of protein kinase C. Receptor stimulation by free fatty acids and protein kinase C activation also induced receptor internalization as evidenced by confocal microscopy. In summary, our data show that FFA1 is a phosphoprotein whose phosphorylation state is modulated by agonists and protein kinase C activation; such covalent modification is associated with receptor internalization.


Assuntos
Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cálcio/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ácido alfa-Linolênico/farmacologia
7.
PLoS One ; 10(3): e0121165, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799564

RESUMO

Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs. heterologous).


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Endossomos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Lisofosfolipídeos/farmacologia , Norepinefrina/farmacologia , Fosforilação , Transporte Proteico/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacologia
8.
Eur J Pharmacol ; 723: 368-74, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24239485

RESUMO

GPR120, free fatty acid receptor 4, is a recently deorphanized G protein-coupled receptor that seems to play cardinal roles in the regulation of metabolism and in the pathophysiology of inflammatory and metabolic disorders. In the present work a GPR120-Venus fusion protein was expressed in HEK293 Flp-In T-REx cells and its function (increase in intracellular calcium) and phosphorylation were studied. It was observed that the fusion protein migrated in sodium dodecyl sulfate-polyacrylamide gels as a band with a mass of ≈70-75kDa, although other bands of higher apparent weight (>130kDa) were also detected. Cell stimulation with docosahexaenoic acid or α-linolenic acid induced concentration-dependent increases in intracellular calcium and GPR120 phosphorylation. Activation of protein kinase C with phorbol esters also induced a marked receptor phosphorylation but did not alter the ability of 1µM docosahexaenoic acid to increase the intracellular calcium concentration. Phorbol ester-induced GPR120 phosphorylation, but not that induced with docosahexaenoic acid, was blocked by protein kinase C inhibitors (bis-indolyl-maleimide I and Gö 6976) suggesting that conventional kinase isoforms mediate this action. The absence of effect of protein kinase C inhibitors on agonist-induced GPR120 phosphorylation indicates that this kinase does not play a major role in agonist-induced receptor phosphorylation. Docosahexaenoic acid action was associated with marked GPR120 internalization whereas that induced with phorbol esters was smaller at early times.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido alfa-Linolênico/farmacologia , Ácidos Graxos não Esterificados/farmacologia , Células HEK293 , Humanos , Ésteres de Forbol/farmacologia , Fosforilação , Proteínas Recombinantes de Fusão/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...